THE DIFFERENTIAL GEOMETRY OF PARAMETRIC PRIMITIVES

Ken Turkowski
Media Technologies: Graphics Software
Advanced Technology Group
Apple Computer, Inc.
(Draft Friday, May 18, 1990)

Abstract: We derive the expressions for first and second derivatives, normal, metric matrix and curvature matrix for spheres, cones, cylinders, and tori.

26 January 1990

Apple Technical Report No. KT-23

The Differential Geometry of Parametric Primitives

Ken Turkowski
26 January 1990

Differential Properties of Parametric Surfaces

A parametric surface is a function:

$$
\mathbf{x}=\mathbf{F}(\mathbf{u})
$$

where

$$
\mathbf{x}=\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]
$$

is a point in affine 3 -space, and

$$
\mathbf{u}=\left[\begin{array}{ll}
u & \mathrm{v}
\end{array}\right]
$$

is a point in affine 2-space.
The Jacobian matrix is a matrix of partial derivatives that relate changes in u and v to changes in x, y, and z :

$$
\mathbf{J}=\frac{\partial(x, y, z)}{\partial(u, v)}=\left[\left.\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array} \right\rvert\,=\left\lceil\left|\begin{array}{l}
\frac{\partial x}{\partial u} \\
\frac{\partial x}{\partial v}
\end{array}\right|\right.\right.
$$

The Hessian is a tensor of second partial derivatives:

$$
\left.\begin{array}{rl}
\mathbf{H} & =\frac{\partial^{2}(x, y, z)}{\partial(u, v) \partial(u, v)}=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
\frac{\partial^{2} x}{\partial u^{2}} & \frac{\partial^{2} y}{\partial u^{2}} & \frac{\partial^{2} z}{\partial u^{2}}
\end{array}\right]} & {\left[\begin{array}{lll}
\frac{\partial^{2} x}{\partial u \partial v} & \frac{\partial^{2} y}{\partial u \partial v} & \frac{\partial^{2} z}{\partial u \partial v}
\end{array}\right]} \\
{\left[\begin{array}{lll}
\frac{\partial^{2} x}{\partial v \partial u} & \frac{\partial^{2} y}{\partial v \partial u} & \frac{\partial^{2} z}{\partial v \partial u}
\end{array}\right]} & {\left[\begin{array}{ll}
\frac{\partial^{2} x}{\partial v^{2}} & \frac{\partial^{2} y}{\partial v^{2}}
\end{array} \frac{\partial^{2} z}{\partial v^{2}}\right.}
\end{array}\right]
\end{array}\right]
$$

The first fundamental form is defined as:

$$
\mathbf{G}=\mathbf{J}^{\mathrm{t}}=\left[\begin{array}{lll}
\frac{\partial \mathbf{x}}{\partial u} & \frac{\partial \mathbf{x}}{\partial u} & \frac{\partial \mathbf{x}}{\partial u} \bullet \frac{\partial \mathbf{x}}{\partial v} \\
\frac{\partial \mathbf{x}}{\partial v} & \frac{\partial \mathbf{x}}{\partial u} & \frac{\partial \mathbf{x}}{\partial v}
\end{array} \frac{\partial \mathbf{x}}{\partial v}\right]
$$

and establishes a metric of differential length:

$$
(\mathrm{d} \mathbf{x})^{2}=(\mathrm{d} \mathbf{u}) \mathbf{G}(\mathrm{d} \mathbf{u})^{\mathrm{t}}
$$

so that the arc length of a curve segment, $\mathbf{u}=\mathbf{u}(\mathrm{t}), \quad \mathrm{t}_{0}<\mathrm{t}<\mathrm{t}_{1}$ is given by:

$$
\mathrm{s}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \frac{\mathrm{ds}}{\mathrm{dt}} \mathrm{dt}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}}|\dot{\mathbf{x}}| \mathrm{dt}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}}|\dot{\mathbf{x}}| \mathrm{dt}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}}\left(\dot{\mathbf{u}} \mathbf{G} \dot{u}^{\frac{1}{t}}\right)^{\frac{1}{2}} \mathrm{dt}
$$

The differential surface area enclosed by the differential parallelogram $(\delta u, \delta v)$ is approximately:

$$
\delta S \approx(|\mathbf{G}|)^{\frac{1}{2}} \delta u \delta v
$$

so that the area of a region of the surface corresponding to a region R in the $u-v$ plane is:

$$
\mathrm{S}=\iint_{\mathrm{R}}(|\mathbf{G}|)^{\frac{1}{2}} \mathrm{dudv}
$$

The second fundamental matrix measures normal curvature, and is given by:

$$
\mathbf{D}=\mathbf{n} \bullet \mathbf{H}=\left[\begin{array}{ll}
n \bullet \frac{\partial^{2} x}{\partial u^{2}} & n \cdot \frac{\partial^{2} x}{\partial u \partial v} \\
n \cdot \frac{\partial^{2} \mathbf{x}}{\partial v \partial u} & n \cdot \frac{\partial^{2} x}{\partial v^{2}}
\end{array}\right]
$$

The normal curvature is defined to be positive a curve \mathbf{u} on the surface turns toward the positive direction of the surface normal by:

$$
\kappa_{\mathrm{n}}=\frac{\dot{\mathbf{u}} \mathrm{D} \dot{\mathbf{u}}^{\mathrm{t}}}{\dot{\mathbf{u}} \dot{\mathbf{u}}^{t}}
$$

The deviation (in the normal direction) from the tangent plane of the surface, given a differential displacement of $\dot{\mathbf{u}}$ is:

$$
\ddot{\mathbf{x}} \bullet \mathbf{n}=\dot{\mathbf{u}} \mathbf{D} \dot{u}^{t}
$$

Reparametrization

If the parametrization of the surface is transformed by the equations:

$$
u^{\prime}=u^{\prime}(u, v) \quad \text { and } \quad v^{\prime}=v^{\prime}(u, v)
$$

then the chain rule yields:

$$
\frac{\partial(x, y, z)}{\partial\left(u^{\prime}, v^{\prime}\right)}=\frac{\partial(u, v)}{\partial\left(u^{\prime}, v^{\prime}\right)} \frac{\partial(x, y, z)}{\partial(u, v)}
$$

or

$$
\mathbf{J}^{\prime}=\mathbf{P J}
$$

where

$$
\mathbf{J}^{\prime}=\frac{\partial(x, y, z)}{\partial\left(u^{\prime}, v^{\prime}\right)}
$$

is the new Jacobian matrix of the surface with respect to the new parameters u^{\prime} and v^{\prime}, and

$$
\mathbf{P}=\frac{\partial(u, v)}{\partial\left(u^{\prime}, v^{\prime}\right)}=\left\{\begin{array}{ll}
\frac{\partial u}{\partial u^{\prime}} & \frac{\partial v}{\partial u^{\prime}} \\
\frac{\partial u}{\partial v^{\prime}} & \frac{\partial v}{\partial v^{\prime}}
\end{array}\right]
$$

is the Jacobian matrix of the reparametrization.
The new Hessian is given by

$$
\mathbf{H}^{\prime}=\mathbf{P H P}^{\top}+\mathbf{Q} \mathbf{J}
$$

where

$$
\mathbf{Q}=\left[\begin{array}{ll}
\frac{\partial(u, v)}{\partial u^{\prime 2}} & \frac{\partial(u, v)}{\partial u^{\prime} \partial v^{\prime}} \\
\frac{\partial(u, v)}{\partial v^{\prime} \partial u^{\prime}} & \frac{\partial(u, v)}{\partial v^{\prime 2}}
\end{array}\right] .
$$

The new fundamental matrix is given by:

$$
\mathbf{G}^{\prime}=\mathbf{P G P}^{\top}
$$

and the new curvature matrix is given by:

$$
\mathbf{D}^{\prime}=\mathbf{P D P}^{\top}
$$

Change of Coordinates

For simplicity, we have defined several primitives with unit size, located at the origin. Related to the reparametrization is the change of coordinates $\mathbf{x}^{\prime}=\mathbf{x}^{\prime}(\mathbf{x})$, with associated Jacobian:

$$
\mathbf{C}=\frac{\partial \mathbf{x}^{\prime}}{\partial \mathbf{x}}=\left[\begin{array}{lll}
\frac{\partial x^{\prime}}{\partial x} & \frac{\partial y^{\prime}}{\partial x} & \frac{\partial z^{\prime}}{\partial x} \\
\frac{\partial x^{\prime}}{\partial y} & \frac{\partial y^{\prime}}{\partial y} & \frac{\partial z^{\prime}}{\partial y} \\
\frac{\partial x^{\prime}}{\partial z} & \frac{\partial y^{\prime}}{\partial z} & \frac{\partial z^{\prime}}{\partial z}
\end{array}\right]
$$

When the change of coordinates is represented by the affine transformation:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
x_{x} & y_{x} & z_{x} \\
x_{y} & y_{y} & z_{y} \\
x_{z} & y z & z_{z} \\
x_{0} & y_{0} & z_{0}
\end{array}\right]
$$

the Jacobian is simply the submatrix:

$$
\mathbf{C}=\left[\begin{array}{lll}
x_{x} & y_{x} & z_{x} \\
x_{y} & y_{y} & z_{y} \\
x_{z} & y & z_{z}
\end{array}\right]
$$

Regardless, the Jacobian and Hessian transform as follows:

$$
\mathbf{J}^{\prime}=\mathbf{J C}, \quad \mathbf{H}^{\prime}=\mathrm{HC}
$$

The normal is transformed as:

$$
\mathbf{n}^{\prime}=\frac{\mathbf{n C}^{-1 \mathrm{t}}}{\left(\mathbf{n C}^{-1 \mathrm{t}} \mathbf{C}^{-1} \mathbf{n}^{\mathbf{t}}\right)^{\frac{1}{2}}}
$$

The denominator arises from the desire to have a unit normal.
The first and second fundamental matrices are then calculated as:

$$
\begin{aligned}
& \mathbf{G}^{\prime}=\mathbf{J}^{\prime} \mathbf{J}^{\mathrm{t}}=\mathbf{J C C}^{\mathbf{t}} \mathbf{J}^{\mathbf{t}} \\
& D^{\prime}=H^{\prime} \bullet \mathbf{n}^{\prime}=\frac{(H C) \bullet\left(n^{-1 t}\right)}{\left(n C C^{-1 t} C^{-1} n^{t}\right)^{\frac{1}{2}}}=\frac{H C C^{-1} \mathbf{n}^{t}}{\left(\mathbf{n C}^{-1 t} C^{-1} n^{t}\right)^{\frac{1}{2}}}=\frac{H \bullet n}{\left(n C^{-1 t} C^{-1} n^{t}\right)^{\frac{1}{2}}}=\frac{D}{\left(n C^{-1 t} C^{-1} n^{t}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Not very pretty. But certain types of transformations can be applied easily. For a uniform scale with arbitrary translations,

$$
\mathbf{C}=\left[\begin{array}{lll}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & r
\end{array}\right]=r \mathbf{I}
$$

so that

$$
\mathbf{J}^{\prime}=\mathrm{r} \mathbf{J}, \quad \mathbf{H}^{\prime}=\mathrm{r} \mathbf{H}, \quad \mathbf{n}^{\prime}=\mathbf{n}, \quad \mathbf{G}^{\prime}=\mathbf{r}^{2} \mathbf{G}, \quad \mathbf{D}^{\prime}=\mathrm{r} \mathbf{D}
$$

For rotations (and arbitrary translations), the Jacobian matrix $\mathbf{C}=\mathbf{R}$ is orthogonal, so the inverse is equal to the transpose, yielding:

$$
\mathbf{J}^{\prime}=\mathbf{J R}, \quad \mathbf{H}^{\prime}=\mathbf{H R}, \quad \mathbf{n}^{\prime}=\mathbf{n R}, \quad \mathbf{G}^{\prime}=\mathbf{G}, \quad \mathbf{D}^{\prime}=\mathbf{D}
$$

Combining the two, we have the results for a transformation that includes translations, rotations and uniform scale:

$$
\mathbf{J}^{\prime}=\mathrm{r} \mathbf{J R}, \quad \mathbf{H}^{\prime}=\mathrm{r} \mathbf{H R}, \quad \mathbf{n}^{\prime}=\mathbf{n R}, \quad \mathbf{G}^{\prime}=r^{2} \mathbf{G}, \quad \mathbf{D}^{\prime}=r \mathbf{D}
$$

or in terms of the composite matrix $\mathbf{C}=r \mathbf{R}$:

$$
\mathbf{J}^{\prime}=\mathbf{J C}, \quad \mathbf{H}^{\prime}=\mathbf{H C}, \quad \mathbf{n}^{\prime}=\frac{\mathbf{n C}}{(\mid \mathbf{C})^{\frac{1}{3}}}, \quad \mathbf{G}^{\prime}=(\mid \mathbf{C})^{\frac{2}{3}} \mathbf{G}, \quad \mathbf{D}^{\prime}=\left(|\mathbf{C}|^{\frac{1}{3} \mathbf{D}}\right.
$$

Sphere

Given the spherical coordinates:

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
r \sin \phi \cos \theta & r \sin \phi \sin \theta & r \cos \phi \mid
\end{array}\right.
$$

we have the Jacobian matrix:

$$
\frac{\partial(x, y, z)}{\partial(\theta, \phi)}=\left[\begin{array}{ccc}
-y & x & 0 \\
\frac{x z}{\sqrt{x^{2}+y^{2}}} & \frac{y z}{\sqrt{x^{2}+y^{2}}} & -\sqrt{x^{2}+y^{2}}
\end{array}\right]
$$

the Hessian tensor:

$$
\frac{\partial^{2}(x, y, z)}{\partial(\theta, \phi) \partial(\theta, \phi)}=\left[\left.\begin{array}{ccc}
{\left[\begin{array}{lll}
-x & -y & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}} & 0
\end{array}\right]}
\end{array}\left[\begin{array}{ccc}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}} & 0
\end{array}\right] \right\rvert\,\left[\begin{array}{lll}
-x & -y & -z
\end{array}\right]\right.
$$

the first fundamental form:

$$
\mathbf{G}=\left[\begin{array}{cc}
x^{2}+y^{2} & 0 \\
0 & r^{2}
\end{array}\right]
$$

the normal:

$$
\mathbf{n}=\left[\begin{array}{lll}
\underline{x} & \underline{y} & \underline{z} \\
\hline r & \frac{r}{r} & \bar{r}
\end{array}\right]
$$

and the second fundamental form:

$$
\mathbf{D}=\left[\begin{array}{cc}
-\frac{x^{2}+y^{2}}{r} & 0 \\
0 & -r
\end{array}\right]
$$

Unit Sphere

Angle Parametrization

Given the unit spherical coordinates with $0 \leq \theta<2 \pi, 0 \leq \varphi<\pi$, we parametrize the sphere:

$$
\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
\sin \phi \cos \theta & \sin \phi \sin \theta & \cos \phi
\end{array}\right]
$$

This yields the Jacobian matrix:

$$
J_{\theta \phi}=\left[\begin{array}{ccc}
-y & x & 0 \\
\frac{x z}{\sqrt{x^{2}+y^{2}}} & \frac{y z}{\sqrt{x^{2}+y^{2}}} & -\sqrt{x^{2}+y^{2}}
\end{array}\right]
$$

the Hessian tensor:

$$
\mathbf{H}_{\theta \phi}=\left\{\begin{array}{ccc}
{\left[\begin{array}{ccc}
-x & -y & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}} & 0
\end{array}\right]} & {\left[\begin{array}{ccc}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}} & 0
\end{array}\right]}
\end{array}\right]
$$

the first fundamental form:

$$
\mathbf{G}_{\theta \phi}=\left[\begin{array}{cc}
x^{2}+y^{2} & 0 \\
0 & 1
\end{array}\right]
$$

the normal:

$$
\mathbf{n}=\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]
$$

and the second fundamental form:

$$
\mathbf{D}_{\theta \phi}=\left[\begin{array}{cc}
-\left(x^{2}+y^{2}\right) & 0 \\
0 & -1
\end{array}\right]
$$

Angle Parametrization

With the reparametrization $\theta=2 \pi \mathrm{u}, \varphi=\pi \mathrm{v}$, we have the Jacobian:

$$
\mathbf{P}=\left[\begin{array}{cc}
2 \pi & 0 \\
0 & \pi
\end{array}\right]
$$

Applying the chain rule, we have:

$$
J_{u v}=\left[\begin{array}{ccc}
-2 \pi y & 2 \pi x & 0 \\
\frac{\pi x z}{\sqrt{x^{2}+y^{2}}} & \frac{\pi y z}{\sqrt{x^{2}+y^{2}}} & -\pi \sqrt{x^{2}+y^{2}}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\mathbf{H}_{u v}=\left[\begin{array}{ccc}
4 \pi^{2}\left[\begin{array}{ccc}
-x & -y & 0
\end{array}\right] & 2 \pi\left[\begin{array}{ll}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}}
\end{array}\right]
\end{array}\right] \\
2 \pi\left[\begin{array}{lll}
-\frac{y z}{\sqrt{x^{2}+y^{2}}} & \frac{x z}{\sqrt{x^{2}+y^{2}}} & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{cc}
\pi^{2}\left[\begin{array}{ll}
-x & -y \\
\hline & -z
\end{array}\right]
\end{array}\right]
$$

Changing coordinates to yield a sphere of arbitrary radius, we find that the expressions for the Jacobian, the Hessian, and the metric matrix remain the same, because x, y, and z scale linearly with r. The curvature matrix changes to:

$$
\mathbf{D}_{\mathrm{uv}}=\left[\begin{array}{cc}
-\frac{4 \pi^{2}\left(x^{2}+\mathrm{y}^{2}\right)}{r} & 0 \\
0 & -\pi^{2} r
\end{array}\right]
$$

Cone

Angle Parametrization

Given the unit conical parametrization:

$$
\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{z} \cos \theta & \mathrm{z} \sin \theta & \mathrm{z}
\end{array}\right]
$$

we have the Jacobian matrix:

$$
\mathbf{J}_{\theta z}=\left[\begin{array}{ccc}
-y & x & 0 \\
\frac{x}{x} & \frac{y}{z} & 1
\end{array}\right]
$$

the Hessian tensor:

$$
\mathbf{H}_{\theta z}=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
-x & -y & 0
\end{array}\right]} & {\left[\begin{array}{ccc}
-\frac{y}{z} & \frac{x}{z} & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
-\frac{y}{z} & \frac{x}{z} & 0
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]}
\end{array}\right]
$$

the first fundamental form:

$$
\mathbf{G}_{\theta z}=\left[\begin{array}{cc}
x^{2}+y^{2} & 0 \\
0 & \frac{x^{2}+y^{2}+z^{2}}{z^{2}}
\end{array}\right]=\left[\begin{array}{ll}
z^{2} & 0 \\
0 & 2
\end{array}\right]
$$

the normal:

$$
\mathbf{n}_{\theta z}=\left[\begin{array}{lll}
\frac{x}{z \sqrt{2}} & \frac{y}{z \sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

and the second fundamental form:

$$
\mathbf{D}_{\theta z}=\left[\begin{array}{cc}
-\frac{z}{\sqrt{2}} & 0 \\
0 & 0
\end{array}\right]
$$

Unit Parametrization

For the parametrization:

$$
\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
r v \cos 2 \pi u & \mathrm{rv} \sin 2 \pi u & \mathrm{vh}
\end{array}\right]
$$

we have:

$$
\begin{aligned}
\mathbf{J}_{\mathrm{uv}} & =\left[\begin{array}{ccc}
-2 \pi y & 2 \pi x & 0 \\
\frac{h x}{r z} & \frac{h y}{r z} & h
\end{array}\right] \\
\mathbf{H}_{\mathrm{uv}} & =\left[\begin{array}{llll}
4 \pi^{2}\left[\begin{array}{lll}
-\mathrm{x} & -\mathrm{y} & 0
\end{array}\right] & \frac{2 \pi \mathrm{~h}}{\mathrm{rz}}\left[\begin{array}{lll}
-\mathrm{y} & \mathrm{x} & 0
\end{array}\right] \\
\frac{2 \pi \mathrm{~h}}{\mathrm{rz}}\left[\begin{array}{llll}
-y & x & 0
\end{array}\right. & {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathbf{G}_{u v}=\left[\begin{array}{cc}
4 \pi^{2}\left(x^{2}+y^{2}\right) & 0 \\
0 & \frac{h^{2}\left(x^{2}+y^{2}+z^{2}\right)}{z^{2}}
\end{array}\right] \\
\mathbf{n}_{u v}=\frac{1}{\sqrt{1+h^{2}}}\left[\frac{h^{2} x}{r z}\right. \\
\frac{h^{2} y}{r z} \\
-1
\end{array}\right] \quad\left[\begin{array}{cc}
-\frac{4 \pi^{2} r z}{\sqrt{1+h^{2}}} & 0 \\
0 & 0
\end{array}\right] \quad .
$$

Cylinder

Angle Parametrization

Given the cylindrical parametrization:

$$
\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
\cos \theta & \sin \theta & \mathrm{z}
\end{array}\right]
$$

we have the Jacobian matrix:

$$
\mathbf{J}_{\theta \phi}=\left[\begin{array}{ccc}
-y & x & 0 \\
0 & 0 & 1
\end{array}\right]
$$

the Hessian tensor:

$$
\mathbf{H}_{\theta \phi}=\left[\begin{array}{ccc}
{[-x} & -y & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

the first fundamental form:

$$
\mathbf{G}_{\theta \phi}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

the normal:

$$
\mathbf{n}=\left[\begin{array}{lll}
\mathrm{x} & \mathrm{y} & 0
\end{array}\right]
$$

and the second fundamental form:

$$
\mathbf{D}_{\theta \phi}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]
$$

Unit Parametrization

With the parametrization:

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
r \cos 2 \pi u & r \sin 2 \pi u & h v
\end{array}\right]
$$

we have the Jacobian matrix:

$$
\mathbf{J}_{\mathrm{uv}}=\left[\begin{array}{ccc}
-2 \pi \mathrm{y} & 2 \pi \mathrm{x} & 0 \\
0 & 0 & \mathrm{~h}
\end{array}\right]
$$

the Hessian tensor:

$$
\mathbf{H}_{\mathrm{uv}}=\left[\begin{array}{r}
{\left[-4 \pi^{2} x\right.} \\
-4 \pi^{2} y \\
0]
\end{array} \begin{array}{lll}
{[0} & 0 & 0
\end{array}\right]
$$

the first fundamental form:

$$
\mathbf{G}_{\mathrm{uv}}=\left[\begin{array}{cc}
4 \pi^{2} \mathrm{r}^{2} & 0 \\
0 & \mathrm{~h}^{2}
\end{array}\right]
$$

the normal:

$$
\mathbf{n}=\left[\begin{array}{lll}
\frac{x}{x} & \frac{y}{r} & 0
\end{array}\right]
$$

and the second fundamental form:

$$
\mathbf{D}_{\mathrm{uv}}=\left[\begin{array}{cc}
-4 \pi^{2} r & 0 \\
0 & 0
\end{array}\right]
$$

Torus

Angle Parametrization

Given the torus parametrization:

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{lll}
(R+r \cos \phi) \cos \theta & (R+r \cos \phi) \sin \theta & r \sin \phi
\end{array}\right]
$$

we have the Jacobian matrix:

$$
\boldsymbol{J}_{\theta \phi}=\left[\begin{array}{ccc}
-y & x & 0 \\
-\frac{x z}{\sqrt{x^{2}+y^{2}}} & -\frac{y z}{\sqrt{x^{2}+y^{2}}} & \sqrt{x^{2}+y^{2}}-R
\end{array}\right]
$$

the Hessian tensor:
the first fundamental form:

$$
\mathbf{G}_{\theta \phi}=\left[\begin{array}{cc}
x^{2}+y^{2} & 0 \\
0 & r^{2}
\end{array}\right]
$$

the normal:

$$
\mathbf{n}=\left[\begin{array}{ccc}
1-\frac{R}{\sqrt{x^{2}+y^{2}}} & y \frac{1-\frac{R}{\sqrt{x^{2}+y^{2}}}}{r} & \frac{z}{r}
\end{array}\right]
$$

and the second fundamental form:

$$
\begin{aligned}
\mathbf{D}_{\theta \phi} & =\left[\begin{array}{cc}
{\left[-\frac{x^{2}+y^{2}}{r}\left(1-\frac{R}{\sqrt{x^{2}+y^{2}}}\right)\right.} & 0 \\
0 & -r
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{R^{2}-x^{2}-y^{2}+z^{2}-r^{2}}{2 r} & 0 \\
0 & -r
\end{array}\right]
\end{aligned}
$$

using the torus's implicit equation:

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}
$$

