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Differential Properties of Parametric Surfaces

A parametric surface is a function:

where

is a point in affine 3-space, and

is a point in affine 2-space.

The Jacobian matrix is a matrix of partial derivatives that relate changes in u and v to changes in
x, y, and z:

The Hessian is a tensor of second partial derivatives:

The first fundamental form is defined as:
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and establishes a metric of differential length:

so that the arc length of a curve segment,   is given by:

The differential surface area enclosed by the differential parallelogram  is approximately:

so that the area of a region of the surface corresponding to a region R in the u-v plane is:

The second fundamental matrix measures normal curvature, and is given by:

The normal curvature is defined to be positive a curve u on the surface turns toward the positive
direction of the surface normal by:

The deviation (in the normal direction) from the tangent plane of the surface, given a differential
displacement of  is:
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Reparametrization

If the parametrization of the surface is transformed by the equations:

then the chain rule yields:

or

where

is the new Jacobian matrix of the surface with respect to the new parameters  and , and

is the Jacobian matrix of the reparametrization.

The new Hessian is given by

where

.

The new fundamental matrix is given by:

and the new curvature matrix is given by:
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Change of Coordinates

For simplicity, we have defined several primitives with unit size, located at the origin.  Related
to the reparametrization is the change of coordinates , with associated Jacobian:

When the change of coordinates is represented by the affine transformation:

the Jacobian is simply the submatrix:

Regardless, the Jacobian and Hessian transform as follows:

The normal is transformed as:

The denominator arises from the desire to have a unit normal.

The first and second fundamental matrices are then calculated as:

Not very pretty.  But certain types of transformations can be applied easily.  For a uniform scale
with arbitrary translations,
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so that

For rotations (and arbitrary translations), the Jacobian matrix C=R is orthogonal, so the inverse
is equal to the transpose, yielding:

Combining the two, we have the results for a transformation that includes translations, rotations
and uniform scale: 

or in terms of the composite matrix :
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Sphere

Given the spherical coordinates:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:
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Unit Sphere

Angle Parametrization

Given the unit spherical coordinates with , we parametrize the sphere:

This yields the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Angle Parametrization

With the reparametrization , we have the Jacobian:

Applying the chain rule, we have:
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Changing coordinates to yield a sphere of arbitrary radius, we find that the expressions for the
Jacobian, the Hessian, and the metric matrix remain the same, because x, y, and z scale linearly
with r.  The curvature matrix changes to:
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Cone

Angle Parametrization

Given the unit conical parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Unit Parametrization

For the parametrization:

we have:
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Cylinder

Angle Parametrization

Given the cylindrical parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Unit Parametrization

With the parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:
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and the second fundamental form:
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Torus

Angle Parametrization

Given the torus parametrization:

we have the Jacobian matrix:

the Hessian tensor:

      

the first fundamental form:

the normal:

and the second fundamental form:

using the torus’s implicit equation:
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